SBZ 6018 Series

Features

- High Conductivity Copper Terminals
- Custom made Shunts available
- Excellent Long-Term Stability
- High Pulse Power Rating
- RoHS and REACH Compliant
- AEC-Q200 Compliant
- Customised versions available on request
- Pin Variant available on request
- Tinned Terminals available on request *

Applications

- Current sensing for BMS (Battery Management Systems) in hybrid and electric automotive applications
- Current sensing for bus bars
- Current sensing for welding equipment

Technical Data		
Resistance Value	0.5	$(\mathrm{m} \Omega)$
Tolerance (R)	5	(\%)
TCR - Resistance Alloy ($20-60^{\circ} \mathrm{C}$)	<-25 (FeCrAl Alloy)	(ppm/K)
TCR - Part ($20-60^{\circ} \mathrm{C}$)	± 50	(ppm/K)
Applicable Temperature Range	-65 to +170	${ }^{\circ} \mathrm{C}$
Power Rating	15	W
Inductance	< 1	nH
Thermal EMF	<3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Stability Deviation	< 0.5 after 2000 Hours, $\mathrm{T}_{\mathrm{t}}^{*}=100^{\circ} \mathrm{C}$	\%
${ }^{*} \mathbf{T}_{\mathbf{t}}=$ Terminal Temperature	<1.0 after 2000 Hours, $\mathrm{T}_{\mathrm{t}}{ }^{*}=130^{\circ} \mathrm{C}$	\%

*Tinned Variant

- RoHS Compliant Plating
- Standard: Sn : 2.5 to $8 \mu \mathrm{~m}$ Ni : 0.5 to $4 \mu \mathrm{~m}$ Inter-liner

- Base Material: Cu-OF Half-Hard
- Available without Ni inter-liner on request

Power Derating Curve

Resistance Change Vs Temperature

Performance:

Type of Test	Reference STD	Test Specifications	Acceptance Criteria
High Temperature Exposure	MIL-STD-202 Method 108	1000 hrs. @ $\mathrm{T}=170^{\circ} \mathrm{C}$. Unpowered.	$\Delta \mathrm{R}+/-1 \%$
Temperature Cycling	JESD22 Method JA-104	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, 1000 \mathrm{Cycles}, 30$ minutes at each extreme	$\Delta \mathrm{R}+/-0.5 \%$
Biased Humidity	MIL-STD-202 Method 103	$85^{\circ} \mathrm{C}$ \& 85 RH with 10% operating power, 1000 hrs .	$\Delta \mathrm{R}+/-0.5 \%$
Operational Life	MIL-STD-202 Method 108	$125^{\circ} \mathrm{C}$ at rated power, 1000 hrs .	$\Delta \mathrm{R}+/-1 \%$
External Visual	MIL-STD-883 Method 2009	Visual inspection	Visual
Physical Dimension	JESD22 Method JB-100	Dimensional inspection as per SBCL Specifications	Shall confirm within tolerance limits
Resistance to Solvents	MIL-STD-202 Method 215	Clean with Aqueous chemical	Marking shall be legible
Mechanical Shock	MIL-STD-202 Method 213	100 g for 6 ms , Half sine	$\Delta \mathrm{R}+/-0.2 \%$
Vibration	MIL-STD-202 Method 204	5 g for 20 minutes, 12 cycles each of 3 orientations. $10-2000 \mathrm{~Hz}$	$\Delta \mathrm{R}+$ +-0.2\%
Resistance to Soldering Heat	MIL-STD-202 Method 210	Solder Temp. $260^{\circ} \mathrm{C}$, Time 10 seconds	$\Delta \mathrm{R}+/-0.5 \%$
Solderability	J-STD-002	As per J-STD-002	>95\% Coverage in 10x Magnification
Electrical Characterization	User Spec.	Resistance as defined	Shall confirm within tolerance limits
Short Time Over Load	--	5 x Rated Power for 5 seconds	$\Delta \mathrm{R}+$ /-0.5\%
Low Temperature Storage	--	$-65^{\circ} \mathrm{C}$ for 24 hrs .	$\Delta \mathrm{R}+/-0.2 \%$

Packing:

- 100 Pieces vacuum packed in plastic bags
- Customised tray packing available on request

SBZ 6018 Series

Example of Ordering Code: SBZ-6018-AC-R0005-5-U-NP-BK

(Example: $0.5 \mathrm{~m} \Omega$ SBZ 6018 without sense pins on un-plated terminals, shipped in bulk packing)

